Multimedia Risk Assessment of

Biodiesel: Relative Mobility, Biodegradation, and Aquatic Toxicity

TR Ginn¹, ML Johnson², KM Scow³, J Miller⁴, L Rastegarzadeh¹, T Hatch¹, A Epple¹, V Nino¹, T Schetrit¹, T Barkouki¹, D Rice, T McKone⁵

¹ UC Davis Civil & Environmental Engineering

² UC Davis Aquatic Ecosystems Analysis Laboratory

³ UC Davis Department of Land, Air, and Water Resources

⁴ Aquascience Inc., Davis CA

⁵ UC Berkeley, Environmental Health Sciences

D. Rice, CUPA 09

Multimedia Risk Assessment

Tier 1

Tier II

Tier III

Tier 1 Preliminary Review

- Define framework and approach
- Identify information needs and gaps
- Peer review

Tier 2 Multimedia Risk Assessment Design Review

- Experimental design developed and submitted
- Design peer reviewed, feedback provided for Tier 3
- Final report is used as the basis for recommendations submitted to the Environmental Policy Council
- Final report is peer reviewed

Tier 3
Final Multimedia
Risk Review

Multimedia Risk Assessment¹

Tier 1 **Tier II**Tier III

Tier 1
Preliminary
Review

- Define framework and approach
- Identify information needs and gaps
- Peer review

Tier 2 Multimedia Risk Assessment Design Review

- Experimental design developed and submitted
- Design peer reviewed, feedback provided for Tier 3

- Final report is used as the basis for

Tier 3

- ¹ http://www.arb.ca.gov/fuels/multimedia/multimedia.htm
- ² http://www.arb.ca.gov/fuels/diesel/altdiesel/biodiesel.htm

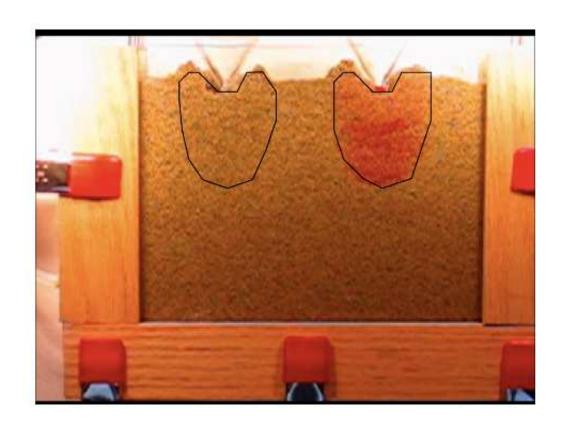
Multimedia Risk Assessment¹ Tier II²

Results to Date

- Mobility
 - Side-by-side infiltration in 2D "ant farm" flow cells
- Biodegradation Tests
 - Microcosm respirometry in soil slurry, 29 day
- Aquatic Toxicity
 - Suite of freshwater/estuarine toxicity tests

¹ http://www.arb.ca.gov/fuels/multimedia/multimedia.htm

² <u>http://www.arb.ca.gov/fuels/diesel/altdiesel/biodiesel.htm</u>


- Image analysis of biodiesel vertical infiltration in "Ant Farm"
- 30x20x2cm, #20 (coarse) sand, water table
- Soy- and Animalfat-based 100% and 20% blends, 1 additive

• "Ant-farm" preparation

- Wet-pluviated sand
- Drain to water table
- simultaneous 40mL CARB#2 and biodiesel side-by-side, both red

Data collected

- plume motion in vadose zone
- lens form & surface area, on water table

Sample Results Final Lenses

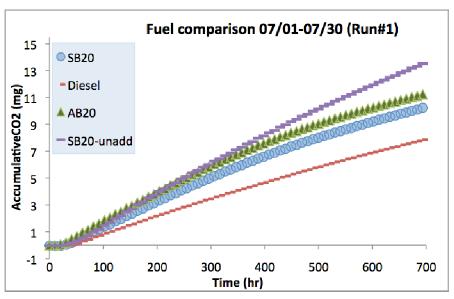
• Soy B20 least different

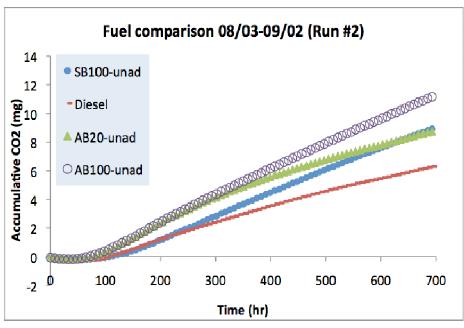
Soy B20a CARB ULSD#2

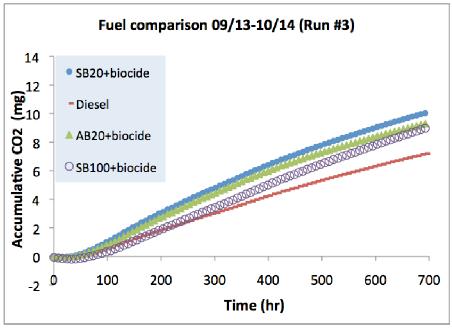
Sample Results Final Lenses

- Animalfat B100 strongest effect
 - similar traveltimes
 - Less lateral dispersion
 - Smaller, deeper lens
 - more residual, less sfc area

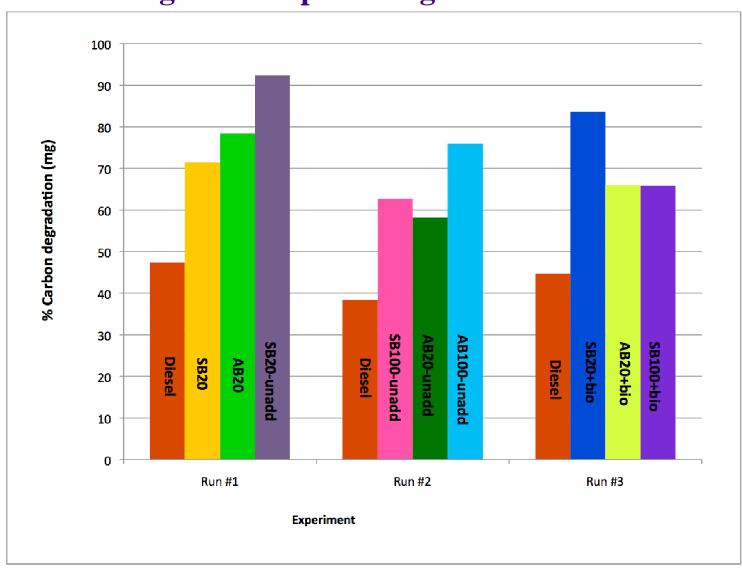
AF B100a CARB ULSD#2

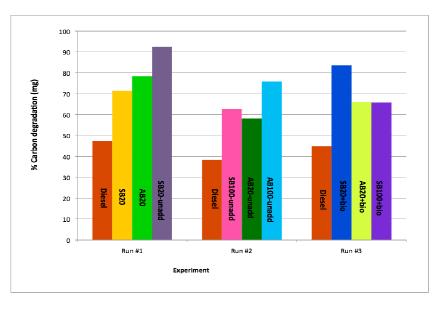

Summary


- Minor differences in
 - traveltimes
- AFB100a only shows Moderate differences
 - smaller lens formation
 - more residuals



- 29-day Respirometry using soil slurry inoculum
 - Soy- and Animalfat-based 100% and 20% blends, 2 additives
- Microcosm preparation
 - 250 mL flask that consists of 200 ml mineral medium
 - 2 g soil (Yolo silt loam) as bacterial inoculums
 - 5uL of test substrate
- For each fuel type:
 - triplicate batch
 - one sterilize control (1% sodium azide) showed no CO2.


Example Results



29Day Cumulative degradation percentages

Summary

- All fuel blends more readily degrable than ref. fuel
- Soy-based blends somewhat more degrable than Animalfat-based blends
- 20% biodiesel blends somewhat more degrable than 100% biodiesel
- Additives effect are minor

- 6 fuel blends
- 3 freshwater and 3 estuarine organisms
- 6 dilutions plus a control per species/fuel
- Using published USEPA chronic toxicity testing protocols
- "100% solutions" produced using the "slow stir" method, defining equilibrium solubility conditions
- All tests met protocol QA/QC requirements

Details

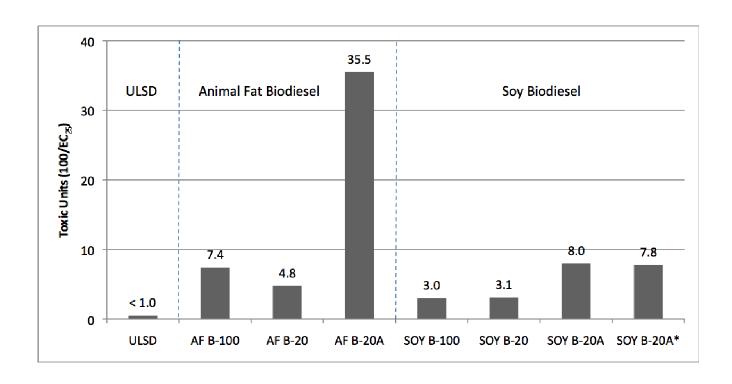
- 6 Blends in addition to reference fuel (ULSD)
 - Animalfat biodiesel (100% 20%, 20% w/additive)
 - Soy biodiesel (100% 20% 20% w/additive)

100% solubility solution by slow stir method

- solutions 100%, 50%, 25%, 10%, 5%, and 1%, w/stock
 - # 2 samples/test archived frozen for later analysis
 - # Replicates for particular combinations.

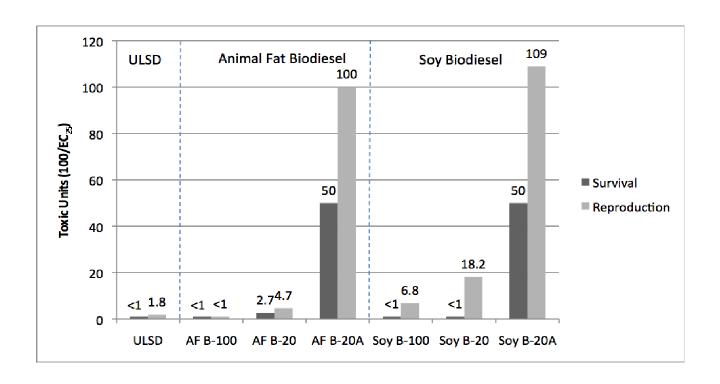
Interpolate among dilutions to determine EC₂₅

- "Toxicity" as $TU = 100/EC_{25}$
 - # TU<1 no effects
 - # TU = 1 effects seen only at 100% solution
 - # TU = 100 effects seen at 1% solution

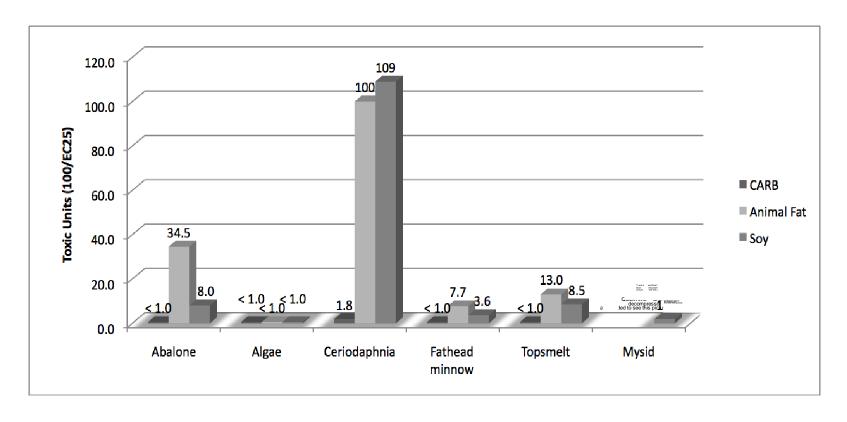

Details

Category	Species	Duration	Endpoint
Freshwater	Green algae (Selenastrum capricornutum)	48-hour	Cell Number
	Water flea (Ceriodaphnia dubia)	7-Day	Survival and Reproduction
	Fathead Minnow (Pimephales promelas)	7-Day	Survival and Growth
Estuarine/Marine	Abalone (Haliotis rufescens)	48-Hour	Shell Development
	Mysid shrimp (Mysidopsis bahia)	7-Day	Survival and Growth
	Topsmelt (Atherinops affinis)	7-Day	Survival and Growth

Results


- ULSD low but detectable toxicity on mysid growth (1.0 TU) and *Ceriodaphnia* reproduction (1.8 TUc) only.
- No unadditized Animalfat or Soy Biodiesel blends produced detectable toxicity to the mysid, topsmelt or fathead minnow.
- Animal Fat and Soy B-100 and B-20 mixtures caused toxicity to algae cell growth, abalone shell development, and *Ceriodaphnia* survival and/or growth.
- Except for algae, the additized Biodiesel B-20 test materials were substantially more toxic than the corresponding unadditized material.

Examples


Red Abalone (Haliotis Rufecens) shell development

Examples

Water flea (Ceriodaphnia dubia) survival and reproduction

Summary Toxicity with additive

Toxicity apparent in all 6 species per growth endpoint

Summary Overall

- Biodiesel blends are significantly more toxic than CARB ULSD#2
 - algae cell growth
 - abalone shell development
 - Ceriodaphnia survival and growth
- Biodiesel 20% blends with antioxidant additive were substantially more toxic than the corresponding unadditized blend
 - abalone shell development
 - Ceriodaphnia survival and growth

Tier II for Biodiesel Blends Tested

Summary

- Mobility
 - AFB100a only shows smaller lens, more residual
- Biodegradation
 - All biodiesel blends more readily degrable than ULSD
 - Soy-based blends, or 20%s, somewhat more degrable
 - Additives effect are minor
- Aquatic Toxicity
 - Biodiesel blends are more toxic than ULSD#2
 - Biodiesel 20% blends with antioxidant additive are more toxic than the corresponding unadditized blend

Tier II for Biodiesel Blends Tested

Summary

- Mobility
 - AFB100a only shows smaller lens, more residual
- Biodegradation
 - All biodiesel blends more readily degrable than ULSD
 - Soy-based blends, or 20%s, somewhat more degrable
 - Additives effect are minor
- Aquatic Toxicity
 - Biodiesel blends are more toxic than ULSD#2
 - Biodiesel 20% blends with antioxidant additive are more toxic than the corresponding unadditized blend